A General, Fully Distributed Multi-Agent Planning
Algorithm

Raz Nissim
Department of Computer Science
Ben-Gurion University, Israel

raznis@cs.bgu.ac.il

ABSTRACT

We present a fully distributed multi-agent planning algorithm.
Our methodology uses distributed constraint satisfaction to
coordinate between agents, and local planning to ensure the
consistency of these coordination points. To solve the distributed
CSP efficiently, we must modify existing methods to take
advantage of the structure of the underlying planning problem. In
multi-agent planning domains with limited agent interaction, our
algorithm empirically shows scalability beyond state of the art
centralized solvers. Our work also provides a novel, real-world
setting for testing and evaluating distributed constraint satisfaction
algorithms in structured domains and illustrates how existing
techniques can be altered to address such structure.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search — Plan execution, formation, and generation, Heuristic
methods; 1.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence - Intelligent agents, Multiagent systems.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Multi-Agent Planning, Distributed Problem Solving, Distributed
Constraint Satisfaction, Single-Agent Planning.

1. INTRODUCTION

Planning and decision making processes take place in many day-
to-day situations: a shipping and logistics company has packages
to be delivered all over the world, a transportation company
schedules trains and buses, and NASA’s automated Mars Rovers
must carry out plans that make optimal use of their resources.

In many cases, the systems for which we plan are naturally
viewed as Multiagent (MA) systems. For example, the shipping
company is composed of multiple agents that perform the
shipping tasks: the pilots/airplanes that ship packages between
airports, and the local drivers/trucks that ship packages within a
certain locality. In [2], Brafman & Domshlak [BD] posed the

Cite as: A General, Fully Distributed Multi-Agent Planning Algorithm,
Raz Nissim, Ronen 1. Brafman and Carmel Domshlak, Proc. of 9th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2010),
van der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10-14,
2010, Toronto, Canada, pp. 1323-1330 Copyright © 2010, International
Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

Ronen |. Brafman
Department of Computer Science
Ben-Gurion University, Israel

brafman@cs.bgu.ac.il

1323

Carmel Domshlak
Faculty of Industrial Engineering
and Management
Technion, Israel

dcarmel@ie.technion.ac.il

following question: “Can a centralized planner, planning for such
a system exploit its MA structure in order to improve its worst
case time-complexity?” Using a very simple and general MA
planning formalism MA-STRIPS that minimally extends the well
known STRIPS language [4], they showed that under certain
conditions, the answer is positive. Roughly speaking, when the
MA system is loosely coupled and there exist plans in which the
load on agents is reasonably balanced, adding agents into the
system results in only polynomial increase of the time complexity.

BD solve the planning problem by compiling it into a particular
CSP. Beyond the utilization of MA structure in formulating this
CSP, BD’s method holds special interest to the Multiagent
systems’ planning community since it also explains how a fully
distributed planning algorithm can be obtained by replacing the
(centralized) CSP algorithms with distributed CSP (DisCSP)
algorithms, and running local planning routines within each agent.
The motivation for fully distributed algorithms has been discussed
extensively in the DisCSP literature. There are many instances of
systems that are engaged in some cooperative behavior, but where
each agent has its own capabilities and its own local planning
tools that are best viewed as black-boxes by the other entities.
Moreover, the ability to plan in a distributed manner can enhance
the robustness of plan execution by a MA system — if something
goes wrong at plan execution time, re-planning would not require
sending all information to and relying on some central solver.
Finally, there is growing interest in the use of parallelization
techniques for scaling up planning algorithms [11]. A fully
distributed algorithm provides a natural path to parallelizing the
solution of planning problems that have a natural MA structure.

The result of BD is a powerful one, theoretically, but it raises an
important question: Can it lead to planning algorithms that are
efficient in practice? There are two key issues: First, BD’s
approach generates a CSP that has a small number of variables,
each with a huge domain. Even the most sophisticated current
CSP solution algorithms reduce to almost breadth-first search on
such problems. Hence, the first hurdle in making this approach
practical is restructuring the CSP, carefully pruning its domains,
and using dynamic (lazy) domain generation to control its actual
size. The second problem is that BD’s results rely on a CSP
algorithm (variable elimination) that comes with good worst-case
performance guarantees, but is impractical in solving real-world
problems. The obvious solution here would be to use state-of-the-
art backtrack-based solution algorithms. Unfortunately, as our
empirical evaluation will show, existing methods and heuristics
cannot cope with this problem, and we must formulate modified
algorithms that take into account problem structure in selecting
the agent, variable, and value orders.

The resulting algorithm is a practical, fully distributed MA
planning algorithm for planning problems described using the
MA-STRIPS language. On classical, centralized, problem
domains, this distributed algorithm is no match to state-of-the-art
centralized planners. However, in loosely-coupled MA domains,
where agents have little interaction with each other, it scales-up
better than these planners. Our algorithm is general because it
relies on the use of general principles -- inter-agent coordination is
formulated as a CSP combined with local planning — and relies on
the minimalistic MA-STRIPS language. These techniques extend
to much more expressive formalisms that can deal with action
costs, resource constraints, and more.

Beyond the MA planning community, our work should be of
special interest to researchers of DisCSPs, whose formulation and
solution play a central role in it. In recent years we have seen
more powerful DisCSP algorithms emerge, which have most often
been tested on randomly generated problems. Real-world
instances often exhibit structure that is not present in randomly
generated instances, and as our work shows, exploiting such
structure is essential in scaling up solution methods in such
domains. Our work provides an interesting case study showing
how existing algorithms can be adapted to handle this structure
more effectively.

The paper is structured as follows. The next section defines the
MA planning model used, DisCSPs and BD’s Planning as
CSP+Planning methodology. Section 3 presents problems we
face when using this methodology in practice, and how we
propose to solve them. Our novel distributed search algorithm,
Planning First, is described next, as well as methods of using
planning mechanisms to improve the search. Section 4 shows
experimental results on several planning domains, when
comparing two versions of our algorithm, with the Fast Forward
[3] centralized planner. A comparison of classical DisCSP
heuristics with ones empowered by planning obtained knowledge
is shown here as well. Section 5 summarizes the paper and its
contributions and discusses issues that arose as well as
suggestions for future work.

2. BACKGROUND
2.1 Multi-Agent Planning Model

We consider a classical MA planning setting where agents act
with complete information and actions are deterministic. The
problems considered are ones that can be expressed in MA-
STRIPS [2], a minimalistic MA-extension of the STRIPS
language [4]. MA-STRIPS can easily be extended with aspects
such as time, resources, preferences, etc.

Definition 1: 4 MA-STRIPS Problem for a system of agents
@ = {@; 3%, is given by a quadruple TI=(P , {A;}*_,,1, G), where:
e P is a finite set of propositions, I € P encodes the initial state,
and G S P encodes the goal conditions,

For 1 <i <k, A; is the set of actions that the agent ¢; is
capable of performing. Each action a € A; has the standard
STRIPS syntax and semantics, that is,
a = (Pre(a), Add(a), Del(a)) is given by its preconditions,
add effects and delete effects.

We assume WLOG that actions have unique names.

To get a clearer picture of the MA-STRIPS model, consider the
well known Logistics domain, in which a set of packages should

1324

be moved on a roadmap from their initial to their target locations
using a given fleet of vehicles such as trucks, airplanes, etc. The
packages can be loaded onto and unloaded off the vehicles, and
each vehicle can move along a certain subset of road segments.
Propositions are associated with each package location, on the
map or in a vehicle, and with every truck location on the map.
Possible actions are drive, load, and unload, each with its suitable
parameters (e.g., drive(truck, origin, destination) and
load(package, truck, at-location)). Associating each vehicle with
an agent, we might assign this agent all drive, load and unload
actions in which it is involved.

Such an MA-STRIPS problem IT induces dependencies on the
agents ®@. In what follows, we use vars(a) to denote pre(a) U
add(a) U del(a) and effects(a) to denote add(a) U del(a).
Let P; = Ugeq, vars(a) be the set of all atoms affected by and/or
affecting the actions of agent ¢;. By infernal and public
propositions of ¢; we refer to P/™ = P,\ Uy earpy B and

PP*? = P\P™ respectively. That is, if p € P, no other agents
can require or affect p. Using this definition of internal
propositions, we can derive the partition 4; = A U AP of
agent @;’s actions into internal and public actions respectively.
That is, A is the set of all actions whose description contains
only internal atoms of ¢;, while all other actions of ¢; are public.

To illustrate this important partition, let’s go back to the Logistics
domain. Here, since all vehicle locations are internal propositions,
all the move actions are certainly internal to the respective vehicle
agents. On the other hand, load/unload actions are public just if
they affect the position of a package in some of its public
locations, i.e., locations that can be reached by at least two agents.
Given ¢;’s action a, the projection of a onto ¢;’s private
propositions is denoted as aly, = (pre(a) N P/*, add(a) n
Pjnt, del(a) N P™). If a € A™ then a = aly, . Otherwise, @l
might have fewer propositions. For example, the public action
load(p, tr, loc), where loc is a public location, has the following
preconditions: at(p, loc) and at(tr, loc). It’s internal projection,
however, would require only at(tr, loc), since at(p, loc) is a public
proposition. The external projection of a onto ¢;’s public
propositions, a|,,;, is defined analogously.

A solution to a MA-STRIPS problem is equivalent to its STRIPS
counterpart — an ordered sequence of actions taking the system
from its initial state to a state containing all goal propositions.

The agent interaction graph [Gy plays an important role in
determining how loosely-coupled a problem is. The nodes of IGp
correspond to the system’s agents ®@. A directed edge from node
@; to node ¢; exists in IGp if there exist actions a; € A; and
a; € A; such that ef fects(a;) N pre(a;) # @. In other words, an
edge from ¢; to ¢; indicates that ¢; either supplies or destroys a
condition required by an action of ¢;. For example, we would
have a directed edge between an airplane and a truck if the
airplane unloads package p in a location reachable by the truck,
since preconditions for loading p are supplied by the airplane.
Edges in both directions between two agents are possible.

2.2 Distributed Constraint Satisfaction

A DisCSP is composed of a set of k agents Ay, A4, ... Ay. Each
agent A; contains a set of constrained variables with a domain of
values for each variable. A constraint is a subset of the Cartesian
product of the domains of the constrained variables. A binary

constraint R;j between any two variables X; and X; is a subset of
the Cartesian product of their domains. In a DisCSP, the agents
are connected by constraints between variables that belong to
different agents [5]. In addition, each agent has a set of
constrained variables, i.e. a local constraint network. An
assignment of a variable is the pair < var,val > where val is a
value from var’s domain. A solution to a DisCSP is a complete
set of assignments that satisfies all the constraints. The act of
checking whether locally assigned values satisfy non-local
constraints is done by sending messages between agents. It is
important to note that previous works on DisCSPs
typically make the simplifying assumptions that each agent has
exactly one variable and that all constraints are binary. Relaxing
these assumptions to general cases is straightforward, but comes
at the cost of more agents and/or larger domains. Since this work
deals with non-binary constraints as well as multi-variable
agents, these assumptions will not be made here.

2.3 Planning as CSP+Planning

The Planning as CSP+Planning methodology solves the MA-
planning problem by separating the public and private aspects of
the problems. Eventually, all aspects must be dealt with, and in a
consistent manner.

The public part of the solution contains public “plans,” i.e.,
sequences of public actions, for each agent. The consistency of
these “plans” is ensured by seeking sequences of public actions
that satisfy a certain CSP. That is, we formulate a CSP in which
each agent has a single variable, and the possible values of this
variable are sequences of public actions of bounded size. The
constraints in this CSP express certain consistency requirements
between these actions. Intuitively, these constraints correspond to
standard planning constraints (“make sure that the preconditions
of actions are true before it is executed,” and “make sure the goal
is true in the end”), but restricted to public propositions only. That
is, at this stage, we ignore the actions’ internal preconditions.

The private, or internal, part of the solution ensures that the agent
can actually execute these public actions in a sequence. Formally,
it can be viewed as a unary constraint on each of the variables in
the CSP defined above. That is, it restricts the public action
sequences of each agent to be locally consistent, meaning that
these sequences can be extended with internal actions to ensure
that the internal preconditions of each action are satisfied as well.
Note that this is indeed a unary constraint.

This is where the term CSP+Planning comes from — the public
aspects, or the coordination between agents is dealt with using a
CSP, and the local, or internal aspect is dealt with using a planner.

The whole process is wrapped in an iterative deepening type
search which gradually increases the upper bound, &, on the
number of public actions of each agent, along with the global plan
for the whole system. These public actions serve as the
coordination points between the agents. In tightly-coupled
systems, one would expect the number of coordination points to
be large, and this entire process is likely to be inefficient. In truly
distributed and loosely-coupled systems, one would expect § to be
small, potentially increasing the efficiency of the process.

Returning to the Logistics domain, say a package needs to be
transported from a location in central Boston to Manhattan. Two
trucks are available, one in each city, as well as an airplane that
can fly between the cities. Each truck would have one
coordination point, corresponding to unloading the package at

1325

Boston Airport or loading the package at NY-Airport. The
airplane would pick up the package at Boston and Drop it off in
NY, corresponding to two coordination points. Flight control and
city navigation leading up to these coordination points would be
up to the local planning of the airplane and trucks, respectively.

So far, relying on the formulation of BD, we described a
centralized algorithm for solving the MA planning problem. As
BD note, by using a DisCSP solver to handle the coordination
part, we readily obtain a distributed planning algorithm. As this
algorithm is the basis upon which we work, we now describe it in
more detail.

Given J, we define DisCSPy;.5 as follows: for each agent we create
a variable representing the agent’s choice of coordination points.
Each such choice is a vector of length 8, where each entry in the
vector is assigned a pair (a, t), where a is the public action to be
performed at time t € {1,2, ..., k6}. Notice that an entry could be
empty, representing an action sequence shorter than &. The
domain of an agent’s variable consists of the Cartesian product of
the agent’s public action sequences and all possible time
assignments of length §. Our next step is to create the
coordination constraints, which verify the agent’s public
commitments with those of other agents. For every public
precondition p of every coordination point (a,t) of agent ¢;,
someone supplies p at time t' < t, and no one destroys p between
t" and t. Next, we create the internal planning constraints for each
agent. These constraints verify that the agent is capable of
generating internal actions which provide the internal
preconditions of the public actions it has committed to, in the right
order. In other words, given an ordered sequence of coordination
points, we try to solve a single agent planning problem while
ensuring the solution contains this sequence. If and only if such a
solution exists, the action sequence is feasible.

The high-level skeleton for this algorithm, as presented in [2], is
depicted below. §-increment messages are sent by a randomly
selected initializing agent when it is informed that no solution
exists for §.

procedure MA-Planning(IT)
5:=1
loop
Construct DisCSPyy.5
if (solve-csp(DisCSPy;.s)) then
Reconstruct a plan p from solution
return p
else
d:=0+1
endloop

BD’s work proves the soundness and completeness of this
algorithm as well as tractability under certain conditions.
Moreover, obtained plans are locally optimal, since the iterative §
-loop ensures that the maximal number of coordination points
between agents is minimized, optimizing plans in this sense.

3. FROM THEORY TO PRACTICE

Theoretically, at this point we are done. We just need to take a
black box DisCSP solver, and implement the above algorithm.
However, when implementing this algorithm, we quickly came
across several challenges. First, the constraints of the generated
DisCSP are not binary. This is due to the disjunction of one aspect
of the coordination constraint. Recall that one constraint stipulates

that “some agent must supply each precondition of each action in
an agent’s public plan”. This constraint effectively glues together
agents that otherwise might not affect one another, but who are
able to supply the same condition to another agent, creating
complex non-binary constraints. Since all DisCSP solvers assume
constraints are binary, none could be used as a “black box” unless
we change the encoding. The second problem is directing the
distributed search. It is known that the order in which a DisCSP
solver algorithm assigns the problem’s variables has a potentially
profound effect on its efficiency. Existing variable ordering
heuristics, as well as the principles behind them (fail-first [6] for
example) all suffer from a common flaw, stemming from the
structure of the problem they help to solve. CSPs contain no
information about variables and values other than constraints.
Therefore, the heuristics can only use the constraints graph and
domain sizes when making a choice. This is, of course, fine when
solving a time-tabling or randomly generated problem, but when
we encode a MA-Planning problem to a DisCSP, these heuristics
seem to disregard information that could speed up the search.

The issue of non-binary constraints is solved using BD’s
Extended Coordination Constraint. Now, each coordination
point, (a,t), would contain a requirement, in the form “I require
proposition v from agent ¢; at time t” for every public
precondition of a. An agent’s choice of a value would now
explicitly state which agent should provide each of its public
preconditions, and when. For example, for the action “Agent truck
will load packagel in airport at time 4” requires that the
precondition at(packagel,airport) hold before time 4. Now, who
will achieve this proposition and when is part of the value choice
made by the agent. For example, one possible value Agent truck
could make would be: “I will load packagel in airport at time 4
and agent airplane will supply packagel at the airport at time 2.”
This unglues the providers, which now only need to worry about
the condition they are explicitly required to supply. Generating the
constraints for the problem created is rather straightforward. Two
values are inconsistent if one requires a condition from a variable
that does not supply it, or if one destroys the other’s requirement.

This encoding has two main drawbacks. First, the variables’
domain sizes are very large. Each variable now encompasses the
entire set of the agent’s public actions to be executed, their
execution times, and which agent is required to achieve each of
their preconditions. The variable’s domain is therefore a Cartesian
product of all the agent’s possible public action sequences of
length J, all possible execution time sequences, and all possible
requirement decisions for said action sequences. Therefore, when
4 grows, these domains explode, rendering even a relatively small
MA-Planning problem into a virtually unsolvable DisCSP.
Second, since every variable encompasses all aspects of its
agent’s plan, we are left with little control over variable and value
selection. This results in a “blind” search, which has no chance of
handling large, structured planning problems.

We therefore must find an encoding that:

1) Keeps the agent interaction graph simple, so that agents will
not interact with each other in complex constraints;

2) Keeps the domains relatively small;

3) Gives us control over variable and value selection;

4) Allows for the use of planning obtained knowledge,

combined with known CSP solving principles and heuristics,
to guide the search process.
We address these issues in the following subsections.

1326

3.1 Separating the Agent’s Variable

Instead of one variable that encompasses all aspects of a possible
plan, we modify BD’s encoding and create three separate
variables: 1) Actions Variable (ActVar) — contains an ordered
sequence of public actions, 2) Times Variable (TimeVar) —
contains an ordered sequence of times to perform the selected
actions and 3) Requirements Variable (RegVar) — contains
binding instructions for other agents in order to supply the
actions’ preconditions.

Splitting-up the variable, of course, does nothing to decrease the
search space. However, we gain flexibility and control in variable
and value selection. Now, through the correct use of variable
ordering, effective pruning can be done due to the more delicate
and precise branching of the search process. More importantly,
the separation allows us to use the fact that this is a planning
problem to our advantage. Whether centralized or distributed, a
CSP doesn’t have any information about the value of a variable
other than its constraints. Therefore, when we encode all the
aspects of an agent’s plan as an assignment of a variable, we are
actually losing information that can help direct the search
efficiently! Two key pieces of information are 1) whether or not
the plan achieves the agent’s goals and 2) whether the plan is
locally feasible. This information is, of course, encoded into the
DisCSP’s constraints, but it cannot help as a heuristic for variable
and value ordering. If we could, therefore, obtain these two key
pieces of information, using them would improve our search in
two ways: First, action sequences that are not locally feasible will
be removed from ActVar’s domains. Since the action selection is
independent of the actions’ execution times and requirements,
assigning ActVar first effectively prunes large branches of the
search tree. Second, action sequences that are part of goal
achieving plans are given preference when assigning the ActVar.
This turns an otherwise blind search to one that’s oriented toward
the planning problem’s goals.

3.2 Planning First Distributed Search

Until now, the agent’s local planning procedure was used only to
determine whether each of the agent’s coordination points could
be reached from the previous one using internal actions, i.e.,
whether the agent’s commitments are feasible. Now, in order to
create a search process that’s more suited for planning
problems, we present the Planning First methodology, which
uses local planning more extensively. We then show how
planning tools and methodologies help improve existing DisCSP
heuristics as well as reducing the search space.

3.2.1 Assigning the Variables

Before assigning values to its variables, the agent plans locally
using all of its actions (private and public) ignoring preconditions
supplied by other agents. The plan must achieve all the agent’s
private sub-goals and must contain no more than public actions.
Once this relaxed plan is found, ActVar is assigned the value
containing the plan’s public actions, arranged in their order in the
plan. Now, we can generate the domain of TimeVar only
including values that are consistent with the assigned action
sequence, and assign a value for TimeVar. Assigning a value for
RegVar would now create action landmarks (actions and
respective execution times, required from an agent) for the agent’s
neighbors in the agent interaction graph. When the next agent is
selected, it performs relaxed planning with the action landmarks it
has accumulated. If a plan achieving all the agent’s sub-goals is

not found, the agent backtracks, sending a backtrack-CPA to a
conflicting agent. Otherwise, it assigns its ActVar and continues to
assign its TimeVar and ReqVar as before. Since the agent knows
the public plans of previously assigned agents, ReqVar’s domain
can be further filtered. When an agent receives a backtrack-CPA,
meaning that there is no consistent assignment for the variables
following the agent, it tries to reassign ReqVar and TimeVar in
that order. If their domains are empty, ActVar’s assignment is
added to the local planner’s forbidden plans. The agent now tries
to find a new plan different from the ones it has tried before. If no
such plan exists, it backtracks as well.

The order in which an agent’s variables are assigned follows the
action-first principle. Choosing the actions first assures us that the
plan is valid and goal-achieving, before we try to find its actions’
execution times. Furthermore, action variables are known to be
more constrained, either by action landmarks or local feasibility
issues, than time variables. It is likely, then, that an assignment of
an agent’s ActVar would prune the search space better than an
assignment of its TimeVar. Here, we start to feel the flexibility
gained by a multi-variable agent, in controlling the search flow.

3.2.2 Empowering DisCSP Heuristics

Heuristics, especially variable ordering, are proven to greatly
affect the efficiency of the search. In our case, we are dealing with
extremely large domains and therefore an extremely large search
space, where uninformed search would stand no chance. Since we
already have a fixed order in which an agent assigns its variables,
we now must choose a method for agent ordering.

Classical variable ordering heuristics like Min-Domain rely on the
number of consistent values in a variable’s domain and therefore
require fully generated domains. Since our domains are generated
dynamically (ActVar only chooses a value, without actually
generating its domain and 7imeVar’s domain is generated only
after the assignment of ActVar), counting consistent values would
entail exhaustive generation of domains, with much computational
effort. Instead, in our algorithm agent selection is performed
dynamically and will follow two principles: goal-achieving and
most-constrained. The goal-achieving principle rates agents by
the number of sub-goals they can achieve. Both private and public
sub-goals are considered. Having goal-achieving agents making
assignments first, directs the search toward the planning
problem’s goals. The most-constrained principle rates agents by
the number of action landmarks they have accumulated. This
principle adds a fail-first mechanism to the agent selection, where
agents with many action landmarks will be more likely not to find
a feasible plan, forcing them to backtrack. Combining the two
principles, we get the goal-achieving heuristic, where ties are
broken using the most-constrained principle.

In following our aim to make the search goal-oriented, value
ordering has a large role to play. Because the agent locally plans
first, when assigning an agent’s ActVar, we are assured that the
search sub-tree created by this choice of actions is oriented toward
achieving the agent’s goals. Therefore, ActVar’s value ordering
heuristic will rely completely on the planning with action
landmarks the agent performs. When the agent can supply goals
that are public, the local planner would strive to find a plan
satisfying as many public goals as it can. Once we’ve assigned
ActVar and TimeVar, as well as generated ReqVar’s domain, we
must choose a value for it. When assigning the agent’s RegVar,
we follow the least constraining value first principle. Choosing
the assignment that adds the fewest action landmarks to

1327

unassigned agents is the option we found worked best, although
empirically ReqVar’s value ordering heuristic didn’t make a big
difference performance-wise.

3.2.3 Reducing ActVar’s Domain

An essential action a of a planning problem IT is an action that is
taken in every plan for II. In other words, without at least one
execution of a, no solution can be found for I1. Finding certain
essential actions for a planning problem can be done quite
efficiently, as shown in [7]. For every action a, we use delete-
relaxation planning (planning using actions obtained by ignoring
delete effects) without a. If no solution is found, a is essential.

In a MA setting, this procedure must be altered since agents might
want some of their actions to remain private. Every agent must
find essential actions separately, with knowledge only of other
agents’ public actions. For every public action a, ¢; will perform
relaxed planning without a as before, using all its actions (private
and public), but using only the external projection of the public
actions of other agents. Since an action of one agent could be
essential for achieving another agent’s private goals, agents could
discover other agent’s essential actions, and inform one another of
such essential actions before the distributed search begins.

Since agents perform essential action discovery independently,
this procedure can be performed in parallel, before the actual
search begins. Once agents have their essential public actions,
they perform a simple check to see whether the number of
essential actions is not larger than 9. If it is, the solve-csp method
immediately returns “no-solution”, and & is incremented. More
importantly, when assigning ActVar, if an essential action is not
included in the plan found, this plan is disregarded and the search
for a different one continues. This way, many values of ActVar
that satisfy the agent’s internal goals, but do not contain actions
that are essential to the entire system, are ignored. This reduces
ActVar’s domain substantially. Because ActVar is assigned before
the agent’s other variables, this reduction effectively prunes large
branches of the search tree, almost effortlessly, and has an
essential role in the success of our algorithm.

3.2.4 Adapting the DisCSP Solver Algorithms

The Planning First search methodology requires adaptation and
alteration of existing DisCSP solver algorithms. First, the
assignment of local variables becomes a relatively complex
operation. Second, variables’ domains cannot be instantiated a
priori, i.e., before the search process starts. For instance, ReqVar’s
domain must be dynamically generated every time the agent
assigns ActVar and TimeVar. Lastly, dynamically generated
domains require dynamically generated constraints as well. In
effect, the DisCSP solver now requires smart agents, capable of
local planning and dynamic generation of domains and
constraints. Following this, DisCSP solvers can no longer be used
as a ‘“black box”. Moreover, some internal procedures of
distributed search algorithms, such as Forward Checking, must
also be modified to cope with complex variable assignment and
dynamically changing domains.

As an example of the issues that arise when we want to adapt an
existing DisCSP solver to our needs, we’ll look at the
Asynchronous Forward Checking (4FC) [8] algorithm. AFC
keeps one partial assignment at all times. When an agent assigns
its variable, it sends copies of the partial assignment to all
unassigned agents. These agents now check if their variable has a
value consistent with the partial assignment. If not, they inform

unassigned agents the partial assignment is NOGOOD.
Performing this forward-checking process is simple when all
domains and constraints are generated a priori, by checking every
value in the variable’s domain for consistency with the partial
assignment. In our case, some decisions must be made regarding
how forward-checking is performed. It is clear that if an agent
cannot find a valid local plan given a partial assignment, then that
assignment is NOGOOD. But what if a valid plan is found and
ActVar is assigned? Do we go on to generate TimeVar’s and
RegVar’s domain and their constraints? This issue is important
since this generation process is computationally expensive,
especially since forward checking is performed many times during
the search. It is clear that relying only on whether a valid local
plan exists does not achieve full detection of NOGOOD partial
assignments. This is because many times a local plan can be found
but consistent execution times or requirements for it cannot. Here,
we have a trade-off between the computational effort we invest in
forward-checking, and the procedure’s NOGOOD detection rate.
Such questions must be answered for various backtracking
techniques, such as Back-Jumping, Back-Marking and Conflict-
Based Back-Jumping [9]. Back-Jumping, for example, requires
every variable to keep track of the deepest variable conflicting
with it, and backtracks to it when no consistent value can be
found. Similarly to forward-checking, this is done easily when
domains are generated a priori. In our case, however, we do not
have the luxury of checking all values in our domain for
consistency, since the variables’ domains are never fully
generated. Again, we must address the trade-off between the
computational effort we invested in generating these domains, and
the efficiency of the back-jumping mechanism. Reliance only on
ActVar’s domain will in most cases effectively reduce back-
Jjumping to simple chronological backtracking. On the other hand,
generating TimeVar’s and ReqVar’s domains will, most of the
times, require more effort than the jump will save.

In our implementation, we examined a number of variants of
forward-checking and back-jumping (the two procedures required
by AFC), and we found that the middle ground is the most
effective. Specifically, we checked whether ActVar and TimeVar
have non empty domains, but we ignored ReqVar’s domain.

3.2.5 The Agent’s Internal Planner

Planning First also requires adaptation of the smart agent’s local
planner. The planner should strive to satisfy as many of the initial
public goals as it can. This follows our aim of making the search
as goal-oriented as possible, with the added bonus of minimizing
the requirements from other agents, following the /east
constraining value first principle. This can be done by trying to
solve the local planning problem where public sub-goals are
encoded as private ones, and removing them one by one if the
search fails. Another option is using rewards or negative costs so
the planner prefers public-goal achieving plans. Private goals
must always be satisfied since no other agent can supply them.
Since some, if not most, of the generated plans will not lead to a
solution for the entire system, the planner must store failed plans
and not assign their action sequences again. Furthermore, the
planner must check if a plan contains the agent’s essential actions
and that the number of public actions in the plan does not exceed
8. These useless plans should be ignored, and their corresponding
nodes in the search tree should not be expanded further.

Action landmarks can be encoded into planning tasks given to the
planner, and therefore require no special alteration of the planner.

1328

This is done by adding § + 1 propositions, where landmark action
i requires the ith proposition and supplies the i + 1th proposition.
Propositions 1 and § + 1 are added to the initial and goal states
respectively. This method, called Planning with Action
Landmarks [2], ensures the ordered execution of the landmarks,
allowing any number of internal actions between them.

3.2.6 Putting It All Together

Our smart agent will follow this high-level schema when
receiving the current partial assignment (CPA):

procedure Receive-CPA(cpa)
if(cpa is a backtrack-cpa) then
if(TimeVar and ReqVar have non-empty domains) then
assign local variables and send to next agent
send unassigned agents forward check message
return
else
reset local domains and forbidden plans
loop
if(Find-local-plan-with-landmarks(cpa)) then
ActVar = extract public actions from plan
generate TimeVar’s domain and assign
generate ReqVar’s domain and assign
if(TimeVar, ReqVar are assigned) then
send assigned cpa to next agent
send unassigned agents forward check message
return
else
add plan to forbidden plans
else
perform modified back-jumping
return
endloop

4. EXPERIMENTAL EVALUATION

Our intuition now is that in planning domains where agents have
little interaction, our algorithm can show scalability beyond
centralized solvers. In order to verify this intuition, we ran
experiments on several domains, which have varying levels of
agent interaction. For our empirical study we compared the
centralized Fast-Forward (FF) [3] solver with two versions of our
algorithm. We decided to run the experiments on the standard IPC
[12] domains. Designed for evaluation of monolithic, single-agent
planning, many of these domains unfortunately do not well fit the
framework of multi-agency. In particular, many of these domains
(e.g., Gripper, Miconic, Grid, Blocksworld, etc.) are single-agent
by their nature. Logistics, Rovers and Satellites were identified as
the domains that allow for natural reformulation of their tasks in
terms of MA-STRIPS. The logistics domain was used throughout
the paper to illustrate our ideas. Rovers and Satellite, as
formulated in the IPC, are single-agent domains, but they were
originally motivated by real MA applications used by NASA. The
Satellites domain requires planning and scheduling observation
tasks between multiple satellites, each equipped with different
imaging tools. The Rovers domain involves multiple rovers
navigating a planet surface, finding samples and communicating
them back to a Lander. These benchmark domains give us a nice
view of Planning-First’s strengths and weaknesses. All
experiments were run on an AMD Phenom 9550 2.2GHZ
processor. Memory usage was limited to 2.5 GB.

When implementing Planning-First, we chose Asynchronous
Forward-Checking as our “black-box™ DisCSP solver algorithm.
FF was used as the internal planner for our agents. Both
algorithms were of course adapted to our needs as described in
sections 3.2.4-5. As is common in DisCSP algorithm evaluation,
distributed search is performed using a simulator, in which agents
are simulated by threads which communicate only through
message passing. This means that computation is actually not
performed in parallel. Aside from Planning-First, we
implemented another similar algorithm, which we refer to as
Planning-Last. Here, the domains of the variables are generated a
priori, and internal planning is performed as a unary constraint
mechanism, filtering these domains. In essence, before search
starts, the agent constructs the complete domains of its ActVar,
TimeVar and ReqVar, with all possible actions sequences, time
sequences and requirements respectively. When assigning ActVar,
internal planning is used to check consistency with landmarks,
filtering out inconsistent action sequences. Distributed search and
internal planning were implemented exactly as in Planning-First.

Performance evaluation of DisCSP solver algorithms is usually
done using two independent measures [10] — computational effort
in the form of non-concurrent constraint checks performed, and
communication load in the form of total number of messages
passed. Performance of planning algorithms, however, is often
measured by the runtime of the planner and by the number of
nodes expanded. Since there is no obvious overlap between the
two cases of performance evaluation, and because we compare
our algorithm to FF, which is not a constraint based planner, we
use running time as our main measure of efficiency.

We had two main issues on our agenda. First, verifying that
Planning-First can show scalability beyond FF in certain loosely
coupled domains. Second, getting an idea of how DisCSP
heuristics, empowered with planning obtained knowledge, can
affect the efficiency of the search. For each domain, we evaluated
performance on a series of problem instances. The number of
agents grew between two instances and with it the problem’s size
(propositions and executable actions). Table 1 depicts the running
time (in sec.) of planners obtained over the three domains. The
solution’s § is given in brackets. Empty entries in the table denote
instances that were not solved due to exceeding the memory limit.

The results in Table 1 give us a clear picture of where Planning-
First performs well. The Logistics domain is very tightly-coupled,
where, on average, 64% of an agent’s actions are public. A truck
agent, for example, has only two or three private (mostly drive)
actions, but has many public load/unload actions since the
majority of locations are shared by more than one agent. This
results in many agent coordination points, which increases 6 (on
average > 3), making Planning-First ineffective'.

An agent in the Rovers domain has fewer public actions (46% on
average), as well as a very complex internal planning problem,
including navigation, soil and rock sampling, and image
capturing. Its coordination points (average & =~ 2.5) include
locations which are accessible to multiple Rovers, and
communicating its data to the Lander. From the results we see that
as the number of agents rises (and the problem’s size increases

! 1t should be noted that this is mostly a reflection of the actual
logistics problem as formulated in the IPC. Here, the local state of
each agent is quite limited, and the picture could change if each
agent had more complex internal route planning problems.

1329

exponentially), Planning-First’s agents are still solving relatively
easy internal planning problems, while FF has difficulty in
handling the size of the problem in its entirety. The Satellites
domain has even less interaction between agents (15% of actions
are public, § = 1.5), where coordination is limited to scheduling
observation tasks shared by multiple satellites. The agent’s
internal planning includes positioning, calibration and image
capturing. Here, as in the Rovers domain, Planning-First clearly
shows scalability beyond FF, confirming our initial intuition. It
should be noted that both algorithms found only optimal solutions
with respect to the number of actions.

Table 1. Runtimes (sec.) of planners across the test domains.

Task | No. of Planning- || Planning- Fast-
no. Agents First Last Forward
LOGISTICS
1 3 0.3 (6=3) 0.3 0.1
2 3 3.4(3) 2.5 0.6
3 4 49(3) 5.8 0.2
4 5 13.6 (3) 22.6 0.4
5 6 51.1 (4) 64 5
6 7 549 (4) 659.8 48.3
7 8 235.4
ROVERS
1 3 4.2 (3) 5.9 34
2 4 343 (2) 37 328
3 5 122.6 (3) 205.3 1165.1
4 6 697 (2) 5245.2
5 7 2254 (2)
SATELLITES
1 2 0.1(2) 0.2 0.1
2 4 0.2(2) 0.5 0.3
3 6 0.6 (2) 304 1.4
4 8 1.5(1) 60.7 6.5
5 10 4.7(1) 42.1
6 12 10.9 (2) 153.2
7 14 20 (2) 521.9
8 16 99.5(2) 1703.4
9 18 605.1 (1)

Our results hint that the percentage of the public actions among an
agent’s actions is informative regarding the coupling level of a
system, quite possibly because it is correlated with the number of
interaction points required in a solution, as captured by d. A high
6 value therefore limits the scalability and effectiveness of
Planning-First. As for Planning-Last, it is clearly not scalable due
to its memory consuming exhaustive domain generation. Once
either & rises or there are many agents, the high number of
possible coordination points results in monstrous domain sizes
that are out of any DisCSP solver’s reach.

The results depicted in Figure 1 compare the widely used DisCSP
variable ordering heuristic, Minimal-Domain (guided by the fail-
first principle) with our goal-achieving most-constrained
heuristics. Here, we use classical DisCSP solver evaluation
measurements — NCCCs and messages passed. The values are
averages over the three domains experimented on.

These results make it clear that our heuristic overwhelmingly
dominates Minimal-Domain. Although it is almost ideal when it
comes to randomly generated, structure-less problems, Minimal-

Domain’s “blindness” to planning information gives our heuristic
a clear advantage. Prioritizing goal achieving agents (regardless of
domain size) is crucial for DisCSPs with such large domains.

Non-Concurrent Constraint Checks

150000000

100000000
vy
9]
o
2 50000000

0 +— T . . T = |
1 2 3 4 5
Agents

=== Goal-Achieving Fail-First Minimal Domain Size

Messages Passed

400000
300000
»n200000
()
1)
a
5100000
=
0 ; —o——*
1 2 3 4 5
Agents

=== Goal-Achieving Fail-First Minimal Domain Size

Figure 1. How ordering the agents by their ability to achieve
goals affects Planning-First’s computational effort and
communication load.

5. CONCLUSIONS AND FUTURE WORK
We have shown that BD’s Planning as CSP+Planning
methodology can be extended into a practical, fully distributed
planner. The powerful theoretic guarantees of this methodology
can, with correct utilization of planning tools and techniques, be
translated into an efficient algorithm. This required: decreasing
domain sizes by careful formulation of the variables in the CSP
and by using domain-specific pruning techniques, such as filtering
plans that do not contain essential actions; and adaptation of
classical techniques and heuristics in order to take into account
problem structure. Our approach yields promising results even
when implemented on a centralized machine, provides novel
distributed planning techniques that are competitive with state-of-
the-art classical planning techniques, and supplies a nice example
of how current DisCSP techniques can be enhanced to take into
account the structure of a particular problem domain. Our work
also introduces the world of MA-Planning to DisCSP researchers,
presenting non-random, structured and well motivated domains
for testing their algorithms and heuristics.

Our work is also of general interest to the distributed Al
community since it provides a nice proof of the validity of some
of the original ideas that motivated work in this area. That initial
work was motivated not only by the desire to deal with systems
consisting of multiple real agents, but also by the belief that

1330

distribution of tasks, modularity of design, and specialization, are
powerful algorithmic tools for building complex, efficient agents.
In the realm of system design, the empirical evidence we have
shown on the utility of reducing the percentage of public actions
could help design MA systems that are easier to plan for, by
defining clear separation of capabilities between agents. Of
course, other considerations, such as robustness could call for
some amount of duplication, but the two aims are not necessarily
contradictory, as it may be possible to modify the planning
algorithms to make smart use of duplication (e.g., by prioritizing).

Future work should check ways to systematically generate plans,
avoiding the need to save previously tried action assignments, and
find methods for handling problem instances with larger § values.

6. ACKNOWLEDGMENTS

Raz Nissim, Ronen Brafman and Carmel Domshlak were
supported in part by ISF Grant 1101/07, the Paul Ivanier Center
for Robotics Research and Production Management, and by the
Lynn and William Frankel Center for Computer Science.

7. REFERENCES
[1] Brafman, R. I., and Domshlak, C. 2006. Factored planning:
How, when, and when not. In AAAI, 809-814.

Brafman, R. ., and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In Proc.
of the 18th ICAPS, 28-35.

Hoffman, J. and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. In Journal of
Artificial Intelligence Research, Volume 14, 253 - 302.

Fikes, R. Nilsson, N. 1971. STRIPS: A new approach to the
application of theorem proving to problem solving. In Proc.
of the 2nd International Joint Conference on Artificial
Intelligence, 608-620.

Yokoo, M., Durfee, E., Ishida, T., Kuwabara, K. 1998. The
Distributed Constraint Satisfaction Problem: Formalization
and Algorithms. In IEEE Trans. on Data and Kn. Eng., 10(5),
673-685.

Haralick, R.M., Elliott, G.L. 1980. Increasing tree search
efficiency for constraint satisfaction problems. In Artificial
Intelligence 14, 263-314.

Zhu, L., Givan, R. 2004. Heuristic Planning via Roadmap
Deduction. In IPC-4, 64-66.

Zivan, R. and Meisels, A. 2007. Asynchronous Forward-
checking for DisCSPs. In Constraints, 12, 131-150.

Prosser, P. 1993. Hybrid Algorithms for the Constraint
Satisfaction Problem. In Computational Intelligence, Volume
9, Number 3, 268-299.

[10] Meisels, A., et. al. 2002. Comparing performance of
Distributed Constraints Processing Algorithms. In Proc. DCR
Workshop, AAMAS, 86-93.

[11] Kishimoto, A., Fukunaga,A. and Botea, A. 2009. Scalable,

Parallel Best-First Search for Optimal Sequential Planning.

In Proc. of the 19th ICAPS, 201-208.

[12] The international Planning Competition, ICAPS,
http://ipc.informatik.uni-freiburg.de/

(2]

